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Exact Solution of an Unsteady Boundary-Layer 
Flow Past a Wedge Considering the Magnetic 

Field Effects  
Shilpa P 

 

Abstract— The present paper is on the study of two-dimensional magnetohydrodynamic unsteady boundary-layer flow of an incompressible laminar 
viscous fluid over a wedge in which the outer freestream velocity is assumed to be proportional to the distance along the wedge surface. The model is 
described by the unsteady Falkner-Skan equation (UFSE) that accounts various physical parameters. Using time dependent similarity transformations 
the governing equations are transformed in to ordinary differential equation, and we explore the effects of magnetic fields on the flow analytically.  In 
order to compare our exact solutions, the UFSE is also solved numerically. Obtained results show that effects of accelerated pressure gradient and 
magnetic parameter are to increase the velocity of the fluid and the momentum boundary-layer thickness and whereas the decelerated pressure gradient 
promotes the oscillatory type solutions. We note that suction and magnetic field suppress the oscillations of the velocity profiles. For unsteady parameter 
k, when we have decelerated flow we see initially the boundary-layer thickness increases and then it decreases. The effects of all the involved 
parameters on velocity profiles, skin friction coefficient are discussed and their results are interpreted with the aid of the graphs. 

Keywords— Magnetic Field, Pressure Gradient, Suction /injection, Unsteady Boundary-layer.   

——————————      —————————— 

1 INTRODUCTION     
HD is considered as one of the richest fields which 
describe the motion of the electrically conducting media 
in the presence of magnetic field which has stabilizing 

effects on the boundary-layer flow. From the past decades, we 
have a active research in this field, because MHD boundary-
layer has many applications in the field of metallurgical 
processes, technical processes, engineering processes such as 
power generators, the cooling reactors, polymer industry, 
spinning of filaments,  flow meters and pumps, the design of 
heat exchangers and  accelerators, plasma studies, geothermal 
energy extraction, oil exploration, the cooling of electronic 
devices and nuclear reactors during emergency shutdown is 
encountered. The study of MHD flow was started in the 
approximation of the boundary-layer theory by Pavlov [1] 
where the problems of the fluid flow was solved for an 
electrically conducting fluid in presence of transverse magnetic 
field. In this direction we have numerous papers on MHD 
boundary-layer like Rossow [2] has given a report stating that 
the motion of the electrically conducting fluid can be controlled 
using magnetic field, the combined effect of viscoelasticity and 
magnetic field was considered by Anderrson [3], the Hall effects 
on classical MHD boundary-layer flow was given by Watanabe 
and Pop [4].  

 
Suction/injection has important role in the field of 

aerodynamics, space sciences, etc., and the chief reason why 
boundary-layer suction is of interest are that it causes 
separation to be delayed, and that it exerts a stabilizing 
influence on laminar flow. Suction opposes an adverse pressure 
gradient and makes the velocity profiles more concave, this 
leads to reduction in the boundary-layer thickness. The effects 
of blowing are less interesting since they oppose the stability of 
the boundary-layer and the attachment of the layer to the 
surface. The boundary-layer is thickened and blown out from 
the surface. It is well-known that the effects of injection on the 

boundary-layer flow are of interest in reducing the drag. It also 
finds applications in polymer technology, metallurgy, and 
dyeing industries. The studies for unsteady flow with effects of 
suction/injection was given by Attia [5], Uwanta and Hamza 
[6], with porous plate by Jha et al. [7], MHD flow over 
permeable stretching surface including suction/injection was 
made by Das et al. [8], Pop and Na [9] have shown that the 
suction reduces the boundary-layer thickness whereas injection 
has the opposite effects in the presences of magnetic field and 
thermal radiation, the transition effects of the MHD boundary-
layer flow was studied by Kumaran et al. [10], Takhar et al. [11], 
Turkyilmazoglu and Pop [12], Nandkeolyar et al. [13] etc. 
Numerical solution of MHD flow in the presence of magnetic 
field with and without suction/injection has been given Cobble 
[14], Soundalgekar [15]. The control of the fluid on the surface 
of subsonic aircraft using suction/injection was given by 
Shojaefard et al. [16]. MHD problem related to unsteady arise in 
a wide variety like form the prediction of space weather, origin 
of earth's magnetic field, damping of turbulent fluctuations in 
semiconductors, measurements of the flow rates of beverages in 
food industry. Inviscid theory is used to study the overall 
performances of electromagnetic pumps and generators and 
boundary-layer theory is used to study the wall shear stress. 
Along with these plenty of research paper there are books on 
MHD like Pai [17], Shereliff [18], Sutton and Sherman [19], 
Hughes and Young [20], etc.  

  
As pointed out by Hasting and Troy [21] for classical 

Falkner-Skan equation, solutions in the current problem for 
MHD Falkner-Skan flow also oscillate a finite number of times, 
but eventually tend to the prescribed boundary condition. This 
motivates us to find the exact solution of unsteady boundary-
layer with effects of magnetic fields and found that for 
increasing magnetic field it is true. Nevertheless, according to 
the authors knowledge there is no exact solution reported on 
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MHD unsteady boundary-layer with all parameters involved in 
our analysis, therefore an attempt is made, to find an exact 
solution to the two-dimensional MHD unsteady boundary-
layer equation for general values of pressure gradient ( β ), 
magnetic parameter (Hartman number ) ( M ), suction/injection 
parameter (α ) and stretching parameter ( λ ). 

 
2 FORMULATION OF THE PROBLEM 

A viscous and incompressible fluid flow over a moving 
wedge with a velocity Uw(x,t)  in the opposite direction to the 
outer free stream velocity U(x,t) and the moving wedge is 
permeable with lateral mass flux velocity Vw(x,t) is considered 
for MHD two-dimensional unsteady laminar boundary-layer. 
The flow is in the upper half-space y>0, if x measures distance 
from the leading edge of wedge surface and y-direction is 
normal to it. For large Reynolds number the viscosity effects are 
confined to a thin layer near the wedge surface due this we 
have near field where the role of viscosity is important and role 
of zero-shear viscosity is important in far field. The moving 
wedge is subjected to applied magnetic field.  

Governing equations for unsteady MHD boundary-
layer flow over wedge are 
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where u and v are the velocity components in the x and y-
direction, υ is the kinematic viscosity of the fluid, σ is the 
electrical conductivity, ρ is the fluid density and the magnetic 
field is given by B(x). From (3) we mean that the pressure in the 
boundary-layer is same as the pressure in the mainstream flow 
U(x,t) (from the influences of the applied magnetic field, the 
pressure is constant in the inviscid flow (i.e the outer velocity 
u=U(x,t), v=0)) as 
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The relevant boundary conditions are 
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where ),( txU  is the velocity at the edge of the boundary-layer,  
),( txwU  is the stretching surface velocity which obey the power 

law relations 
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time. And also 2
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xBxB , where 0B the constant 
magnetic field, x  is is the distance measure from the outset of 
the boundary-layer. Introducing the stream function ),,( tyxψ
as 
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which satisfies the continuity equation identically, and  
considering the similarity transformations, 
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Plugging (6), (7) and (8) into (4), we get MHD unsteady Falkner-
Skan equation as 
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is a dimensionless measure of the unsteadiness of the flow, 
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represents suction and 0<α  represents injection, whereas 0=α  

is impermeable of the plate, and 
∞
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U
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λ , the boundary has a 

specified velocity and stretch. For 0>λ , the wedge is moving 
opposite to the mainstream flow. Integrating (9) and (10) with 

0,0,1 ==−= Mkβ  gives us Riccati type equation 
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where )0(f ′′=∆ , which has an exact solution
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 provided ,2+)+2(1−±=∆ αλαλ  the velocity profiles for 
different values of α  and λ  can be obtained  by differentiating 
(12b). The velocity gradient at the wall will be 

.)0( 2+)+2(1−±=∆=′′ αλαλf The exact solution of the (9) 
and (10) is αηη +=)(f  for 0,1 =−= αλ  then the velocity 
gradient becomes zero, which demarcate the solution nature 
across boundary-layer flow. 
 
3 EXACT SOLUTION 

The aim of the paper is to obtain the exact solution (9) 

and (10) for all αβλ ,,, M and k we shall now rewrite the (12b) 
in the form 
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the (14) is obtained on adding and subtracting 
2

2∆  to the 

exponent in the numerator of (12b) and simplifying it, we obtain 
)(ηG  in the above form. Substituting (13) into UFSE (9) and (10) 

we get  

)15(036)))(2)1(((2

)22(2)))1((6(2

=′+−∆−)−((2+)−)(2∆−+′−

++′−
2

−)∆−+−′′′−′′′

GGkG

kMGGG
k

GGGGG

αληβλα

βηλα

 where )(ηGG = , and corresponding boundary conditions 

become    
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the solution of (15) and (16) is given by (14). The error and 
exponential functions in (14) may be expanded in terms of 
Taylor series expansion which have infinite radius of 
convergence. This solution (14) for 0,1 =−= kβ  and 0=M  gives 
a hint to obtain a similar analysis for the other values of M,β

and .k  It is therefore natural to assume the base solution as 
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where the coefficients na  are to be determined as a function of 
Mk ,,β  and ∆ . The convergence of the above series is 

postponed for a while. The first two coefficients 
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etc., and substitution of (17) in (15) gives the recurrence relation 
(which involves tedious algebra) 
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for ......3,2,1=n . 

From (18) we can notice that all the coefficient na  have been 

obtained in terms of αβ ,,, Mk . The above coefficients na

involve one free coefficient 2a which remains unknown due to 

the derivative boundary condition at infinity, this 2a
characterizes the coefficient of skin friction can be found by (13) 
and (17) in such way that the derivative condition at far distance 

is satisfied. This is equivalent of finding value of 2a  of series 
(17) or )0(f ′′ from the system of (9) and (10) as (13) intrinsically 
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relates this with each other 
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from this either we can obtain 2a  or )0(f ′′ to satisfy the end 

condition of (10) or (16). To compute 2a or )0(f ′′ integrate (9), 
we get 
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where ∞η  denotes the large value ofη , we now write (20) in 
more convincing manner and also useful for its integration as 
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the solution of the above asymptotic integral relation is too 
complicated by the fact that the boundary condition is specified 

at infinity. Looking at the equation (19) and (20), ( )0f ′′  appears 
on both sides therefore it should be found iteratively using 
suitable initial approximation and (21) provides us to choose an 

initial approximation for ( )0f ′′ . From the known exact analytical 
solution (12b) for all parameters Mk ,,β and α which is good 

initial estimate for ( )0f ′′ , and also it ensure the fast convergence. 

Thus, within a few integrations, we obtain ( )0f ′′  which is 
accurate enough. The derivative condition at far distance is 

satisfied i.e., 1)( →′ ηf  as ∞→η . The values of ( )0f ′′  which 
defines the skin friction coefficient thus obtained are consistent 
with numerical solution of the problem. The results obtained by 
the method described above have been presented in terms of 
velocity profiles in figures, and of the skin friction coefficient in 
table. 
  
4 RESULTS AND DISCUSSION 

In the present paper, the similarity solution of the 
MHD unsteady Falkner-Skan equation is obtained when the 

main stream flow is of the form 
mxtA )(  The dependency of the 

boundary-layer flow on pressure gradient, unsteady parameter, 
magnetic parameter (Hartmann number) stretch and speed of 
the wedge surface parameter  and suction/injection parameter 
have been studied. Following the approach of Sachdev  et al. 
[22] for steady case we have developed a new similar approach 
for unsteady flow. To validate our obtained results we have 
given numerical solution of the problem. The obtained results 
exist for all values of Mk ,,β and λ  which are presented in the 
form of velocity profiles in Figs. (1- 5) and skin friction co-
efficient in table (1).  

Fig. 1 is plotted for variation of )(ηf ′   with η for an 
various stretching parameter .λ  It is seen that the flow becomes 
oscillatory for negative pressure gradient and also the velocity 
curves asymptotically satisfy their end condition, from this it is 
also clear that the effects of magnetic field is to control 
oscillation (i.e. overshoot of the velocity profiles are seen) 
contradiction to Fig. 1 in Fig. 2 which is plotted for different 
values of decelerated flow parameter ( )0<β  fixing other 
parameters, that when there is magnetic effect or suction effects 
it will suppress the oscillation of the velocity profiles (i.e no 
overshoot or undershoot of velocity profiles are seen) but 
surprisingly we see that the curves for  )0.3,5.2 −−=β  decrease 
first i.e., it represents the undershoot 1)(( <′ ηf  for some )η  and 
eventually satisfy their end condition. This was pointed out by 
Hastings and Troy [20] for classical Falkner-Skan equation, 
therefore in the present problem MHD unsteady Falkner-Skan 
flow also oscillate a finite number of times, but eventually tend 
to prescribed boundary condition which is true even for 
increasing magnetic parameter M .  

In Fig. 3 the effects of magnetic parameter M on 
horizontal velocity )(ηf ′  shows that the velocity decreases as 
magnetic parameter )(M  increases and the boundary-layer 
acquires more magnetism that leads to the variation in Lorentz 
force which opposes the flow, due this the momentum 
boundary-layer thickness decreases as magnetic parameter 
increases, from this we can point out that  the presence of 
magnetic field has effects on boundary-layer flow when 
compared to the results with no magnetic field. The same 
nature is seen for pressure gradient also in Fig. 4. 

It is clear that the effects of pressure gradient and 
magnetic parameter are to decreases the velocity as results 
momentum boundary-layer thickness reduces it is observed 
that all curves no undershoot and overshoot for these 
parameter.  We also draw the velocity shapes ( )ηf ′ as a 

function ( )η  for unsteady parameter k  in Fig. 5 for other fixed 
parameters. It is immediately clear that for increasing k  from -
3.0 to 3.0, the boundary-layer thickness decreases which means 
that flow is attached to the moving wedge. In this case profiles 
are benign and are well within the boundary-layer.  
           The wall shear stress )0(f ′′ are plotted as a function of k  
for various values of magnetic parameter in Fig.6 and for 
various values of pressure gradient in Fig. 7. In Fig.6 we notice 
that as unsteady parameter increases from zero the wall shear 
stress gradually decreases to negative infinity.  Further these 
wall shear stress decreases as the magnetic parameter decreases. 
We can also observe that the velocity profiles exist and satisfy 
the boundary condition (10). The results of (9) in Fig.7 are 
plotted for different values of pressure gradient  it can be seen 
that for increasing unsteady parameter a linear decrease in wall 
shear stress exist and also for each )0(f ′′  the velocity profiles 
exists. 

Table 1 compares the values for the skin friction 
coefficient )0(f ′′  obtained by exact solution with that of the 
numerical solution of the problem for various values of kM ,,β  
andα . We see that there is an excellent agreement between two 
solutions for all values given in the table. Also as the wall 
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stretching parameter increases (in absolute sense), skin friction 
coefficient also increases. Also as M,β  and α  increases, it 
again increases.   
 
5 FIGURES AND TABLES 
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Figure 1: Variation of velocity profiles )(ηf ′  with η  for 
different values of λ analytically. 
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Figure 2: Variation of velocity profiles )(ηf ′  with η  for 
different values of pressure gradient 0<β analytically. 
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Figure 3: Variation of velocity profiles )(ηf ′  with η  for 
different values of magnetic parameter M analytically. 
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Figure 4: Variation of velocity profiles )(ηf ′  with η  for 
different values of Pressure gradient 0>β analytically. 
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Figure 5: Variation of velocity profiles )(ηf ′  with η  for 
different values of unsteady parameter k analytically. 
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Figure 6: Velocity profiles for the wall shear stress )(ηf ′′  
with unsteady parameter k for different values of 
magnetic parameter M which are obtained analytically. 
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Figure 7: Velocity profiles for the wall shear stress )(ηf ′′  
with unsteady parameter k for different values of 
pressure gradient β which are obtained analytically. 

 
Table 1: Comparison of wall stress value )0(f ′′  with 
numerical solution of the problem. 
 

 2.1,1,1 −==−= λβk  

 M=0 M=1 M=2 

α  Exact Num Exact Num Exact Num 

-0.5 -0.2245 --0.2245 -0.2966 -0.2964 -0.4362 -0.4392 

-1 -0.1885 -0.1885 -0.2013 -0.2513 -0.3937 -0.3937 

0 -0.2882 -0.2882 -0.3489 0.3489 -0.4897 -0.4897 

0.5 -0.3498 -0.3498 -0.3977 -0.4077 -0.5452 -0.5452 

1 -0.4177 -0.4177 -0.4725 -0.4726 -0.6054 -0.6054 

4.1,1,1 −=−== λβk  

α  Exact Num Exact Num Exact Num 

-0.5 0.9407 0.9607 -0.0732 -0.0755 -0.6088 -0.6088 

-1 1.5698 1.5698 0.0214 0.02146 -0.5229 -0.5230 

0 0.4453 0.4460 -0.2036 -0.2036 -0.6985 -0.7085 

0.5 0.0619 0.0620 -0.3547 -0.3547 -0.8216 -0.8216 

1 -0.2292 -0.2292 -0.5212 -0.5212 -0.9472 -0.9472 

 
5 CONCLUSIONS  

In this paper we have obtained the exact 
solution of the MHD unsteady Falkner-Skan equation 
for two-dimensional boundary-layer flow past wedge 
with suction /injection in the presence of magnetic field. 

The comparison of the obtained exact method is done 
numerically and found that it agrees well. It is shown 
that the effects of pressure gradient and magnetic 
parameter are to decrease the momentum boundary-
layer thickness. As well as the nature of suction ( 0>α ) 
parameter is different from injection ( 0<α ) parameter 
i.e., suction always reduces the thickness while injection 
has an opposite effect. For unsteady parameter k with 

ok <  the boundary-layer thickness increases and then it 
decreases when k  is increased to positive value and for

0>k  as k increases the velocity decreases then 
boundary-layer thickness decreases. 
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